The Effects of Angiotensin II and Angiotensin-(1–7) in the Rostral Ventrolateral Medulla of Rats on Stress-Induced Hypertension
نویسندگان
چکیده
We have shown that angiotensin II (Ang II) and angiotensin-(1-7) [Ang-(1-7)] increased arterial blood pressure (BP) via glutamate release when microinjected into the rostral ventrolateral medulla (RVLM) in normotensive rats (control). In the present study, we tested the hypothesis that Ang II and Ang-(1-7) in the RVLM are differentially activated in stress-induced hypertension (SIH) by comparing the effects of microinjection of Ang II, Ang-(1-7), and their receptor antagonists on BP and amino acid release in SIH and control rats. We found that Ang II had greater pressor effect, and more excitatory (glutamate) and less inhibitory (taurine and γ-aminobutyric acid) amino acid release in SIH than in control animals. Losartan, a selective AT₁ receptor (AT₁R) antagonist, decreased mean BP in SIH but not in control rats. PD123319, a selective AT₂ receptor (AT₂R) antagonist, increased mean BP in control but not in SIH rats. However, Ang-(1-7) and its selective Mas receptor antagonist Ang779 evoked similar effects on BP and amino acid release in both SIH and control rats. Furthermore, we found that in the RVLM, AT₁R, ACE protein expression (western blot) and ACE mRNA (real-time PCR) were significantly higher, whereas AT₂R protein, ACE2 mRNA and protein expression were significantly lower in SIH than in control rats. Mas receptor expression was similar in the two groups. The results support our hypothesis and demonstrate that upregulation of Ang II by AT₁R, not Ang-(1-7), system in the RVLM causes hypertension in SIH rats by increasing excitatory and suppressing inhibitory amino acid release.
منابع مشابه
Cardiovascular responses produced by resistin injected into paraventricular nucleus mediated by the glutamatergic and CRFergic transmissions within rostral ventrolateral medulla
Objective(s): Resistin, as a 12.5 kDa cysteine-rich polypeptide, is expressed in hypothalamus and regulates sympathetic nerve activity. It is associated with obesity, metabolic syndrome and cardiovascular diseases. In this study, we investigated the neural pathway of cardiovascular responses induced by injection of resistin into paraventricular nucleus (PVN) with rostr...
متن کاملSodium intake influences hemodynamic and neural responses to angiotensin receptor blockade in rostral ventrolateral medulla.
To determine the effects of physiological alterations in endogenous angiotensin II activity on basal renal sympathetic nerve activity (RSNA) and its arterial baroreflex regulation, angiotensin II type 1 receptor antagonists were microinjected into the rostral ventrolateral medulla of anesthetized rats consuming a low, normal, or high sodium diet that were instrumented for simultaneous measureme...
متن کاملElectrophysiological properties of rostral ventrolateral medulla neurons in angiotensin II 1a receptor knockout mice.
We compared the electrophysiological properties of neurons in the rostral ventrolateral medulla of neonatal angiotensin II type 1a receptor knockout mice and wild-type mice with responses to angiotensin II, its type-1 receptor blocker candesartan, and its type-2 receptor blocker PD123319. Using the whole-cell patch-clamp technique, we examined the characteristics of rostral ventrolateral medull...
متن کاملTonic cardiovascular effects of angiotensin II in the ventrolateral medulla.
The rostral and caudal parts of the ventrolateral medulla play a major role in the control of blood pressure. Both regions contain a high density of receptor binding sites for angiotensin II, and it has been shown previously that microinjection of angiotensin II into the rostral ventrolateral medulla causes a rise in blood pressure. The aims of this study were to determine the cardiovascular ef...
متن کاملExercise Training Improves the Altered Renin-Angiotensin System in the Rostral Ventrolateral Medulla of Hypertensive Rats
The imbalance between angiotensin II (Ang II) and angiotensin 1-7 (Ang 1-7) in the brain has been reported to contribute to cardiovascular dysfunction in hypertension. Exercise training (ExT) is beneficial to hypertension and the mechanism is unclear. This study was aimed to determine if ExT improves hypertension via adjusting renin angiotensin system in cardiovascular centers including the ros...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013